

 Navigation

 	
 index

 	
 next |

 	Alright 1.0.0 documentation

Alright —at a glance—

Alright is a library for asserting particular properties about data in
JavaScript. The common use for this kind of thing is automated testing (TDD,
BDD, etc), and Alright can be used with most popular testing frameworks with
pluggable assertions, such as Mocha [http://visionmedia.github.io/mocha/].

Guides

	
	
	Getting Started

	A lighting introduction to Alright, so you can jump straight to
testing.

	
	Discover Alright

	A thorough tour of Alright’s concepts, so you can understand how to best
use it for testing your projects, and extend it with new assertions.

	
	
	Contributing

	All you need to know to contribute to the Alright library!

	
	API Reference

	A quick reference of Alright’s API, including usage examples.

Platform Support

Alright runs on all ECMAScript 5-compliant platforms without problems. It’s
been successfully tested in the following platforms:

 	8.0+

 	5.1

 	15.0+

 	10.0+

 	21.0+

 	0.6+

For legacy, ES3 platforms, like IE’s JScript, you’ll have to provide user-land
implementations of the ES5 methods. You can do so by just including the
es5-shim [https://github.com/kriskowal/es5-shim] library.

Support

Alright uses the Github tracker [https://github.com/robotlolita/alright/issues] for tracking bugs and new features.

Licence

MIT/X11.

 Copyright 2014, Quildreen Motta.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Alright 1.0.0 documentation

Getting Started

This document will guide you through the basics of Alright. This is a quick
introduction, but once you finish this page you’ll know all you need to start
writing assertions for your code-base.

What is Alright?

Alright is a library that provides ways of asserting properties about pieces of
data in JavaScript without verbosity, and in a way that it can be easily
extended to support specific type of assertions. It also provides Sweet.js [http://sweetjs.org/]
macros for writing concise assertions.

For example:

2 + 2 => 4
[1, 2, 3] should have('foo')

Okay, cool. Where do I start?

In this tutorial we’re going to use Alright together with Node.js [http://nodejs.org/], Mocha [http://visionmedia.github.io/mocha/],
and Sweet.js [http://sweetjs.org/] to write some tests. The process is pretty similar to all other
platforms, and we show how to make things work in the browser at the end.

So, first things first, once you’ve got Node.js [http://nodejs.org/] installed, you’ll want to
start a new project and run the following commands:

$ mkdir test-project
$ cd test-project
$ npm install sweet.js alright mocha

Writing assertions

With all in place, we’re ready to create our first test script. Make a file
test/array.sjs with the following contents:

// The only requirement is that you have `alright` in your
// scope for the macros to work.
var alright = require('alright')

describe('Array#indexOf()', function() {
 it('Should return the index of the item.', function() {
 [1, 2, 3].indexOf(2) => 1
 })

 it('Should return -1 if the item is not present.', function() {
 [1, 2, 3].indexOf(4) => -1
 })
})

As you see, assertions are written in using the form: expression => expected,
where expression is any computation for the value you want to test, and
expected is the value you expect to get as result. The values are compared
structurally, which means that [1, 2, 3] => [1, 2, 3] will succeed, for
example. You can use expression => not expected to invert the expectation,
so 2 => not 1 will succeed.

The keen JavaScripter might have noticed that we’re not quite writing
JavaScript here, so first we need to turn this script into something a JS
engine (in this case, Node’s v8) will understand. This is where the sjs
compiler we’ve installed (through sweet.js) comes in. It takes a .sjs
file, some macro definitions (which do tell the compiler how the magic should
be done), and gives us JavaScript as we know it:

$ $(npm bin)/sjs --module alright/macros -o test/array.js test/array.sjs

Note

The $(npm bin) command allows one to get the path where local binaries are
installed with npm, so you can use it to keep all of your dependencies
localised instead of installing them globally.

Finally, we just need to run the test through Mocha:

$ $(npm bin)/mocha --reporter spec

Should all go well, you’ll see the following output:

[image: ../_images/mocha-success.png]

Note

If you’re not using any build system, you can get npm to help you with
automating this compiling/testing phase. Just put whatever you’d write in
the command line inside of your package.json‘s script section. You
can even leave out the $(npm bin) part, since npm searches inside that
folder automagically:

{
 (...)
 "scripts": {
 "test-cc": "sjs -m alright/macros -o test/array.js test/array.sjs",
 "test": "npm run test-cc && mocha --reporter spec"
 },
 (...)
}

Complex assertions

The most straight forward way of making assertions is the structural equality
assertion (=>), but sometimes you’re interested in other properties as
well. There are so many possibilities of properties you can come up with that
it doesn’t make sense to come up with a special symbol for every one of
them. So, instead, Alright allows you to provide a validation function.

Many validations are built right into Alright itself. In fact, the structural
equality assertion is just a special case of this:

[1, 2] => [1, 2]
// Is the same as:
[1, 2] should alright.equal([1, 2])

Since they’re just regular functions, you can always write your own:

function beGreater(expected){ return function(actual) {
 var divergence = alright.divergence.invertibleDivergence(
 '{:actual} to be greater than {:expected}'
 , '{:actual} to not be greater than {:expected}'
)

 return alright.assert(actual > expected
 , divergence.make({ actual : actual
 , expected: expected }))
}}

3 should beGreater(2)

Other platforms

The same concepts explained here apply to all other JavaScript platforms, but
if you’re not using a platform that has direct support for Node modules, you’ll
want to use the UMD bundle (the single file that can be used in any platform,
and any module system!). The easiest way of doing so is downloading the latest
release [https://github.com/robotlolita/alright/releases/download/v1.0.0/alright-1.0.0.tar.gz] and loading the alright.umd.js in your platform:

Common JS:

var alright = require('alright')
(...)

AMD:

require(['alright'], function(alright) {
 (...)
})

Browser without a module system:

<script src="/path/to/alright.umd.js"></script>
<script>
 /* alright is in the global scope here */
 (...)
</script>

Using Alright without macros

If you don’t want to use Sweet.js macros, you can use alright’s testing
functions directly. Just use the verify function to throw an exception if
an expectation isn’t met:

var _ = alright

_.verify(_.equals(1)(1)) // same as: 1 => 1

_.verify(_.not(_.equals(1)(1))) // same as: 1 => not 1

Where to go from here?

Now that you get the idea behind Alright, you can start writing your assertions
for testing your JavaScript code. Be sure to check out the Discover
Alright documentation to learn everything you can get from the
library.

 Copyright 2014, Quildreen Motta.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Alright 1.0.0 documentation

Discover Alright

This document will guide you through the concepts behind Alright. After reading
this you’ll understand how Alright works, and how you can extend it to meet
your needs, by providing new assertions or new ways of making assertions.

Overview

How do you make assertions composable and extensible? Well, definitely not by
throwing exceptions, since those require the use of special constructs for when
you don’t want a failed assertion to terminate the process. Instead, Alright
uses two core concepts: Validations and Divergences. They’re derived from
the idea that when you make an assertion about the property of an object, you
have two different outcomes. Either the assertion succeeds, which is great, or
it fails, in which case you want to provide a detailed description of the
failure.

The Validation data structure captures the idea of an assertion either
succeeding or failing, whereas the Divergence data structure captures the
idea of providing a detailed description of the assertion.

By using these data structures instead of directly using Exceptions and
throwing errors, we’re not only able to compose assertions and provide support
for things like asynchronous assertions in a straight-forward manner, but we
can do this in a fairly high-level and easily extensible way.

This also means that assertion functions do only one job. They tell you whether
a property holds or not, and if not, tell you why it doesn’t hold. For
example:

// :: Number → Number → Validation[Divergence, Divergence]
function greaterThan(a){ return function(b) {
 var message = invertibleDivergence('{:b} to be greater than {:a}'
 , '{:b} to not be greater than {:a}'
).make({ a: a, b: b })

 return b > a? Success(divergence)
 : /* otherwise */ Failure(divergence)
}}

greaterThan(2)(3)
// => Failure(Divergence("2 to be greater than 3"))

greaterThan(3)(2)
// => Success(Divergence("2 to be greater than 3"))

Another function can then determine what to do with the successful or failed
assertion, so it’s possible to support asynchronous and synchronous assertions
in a fairly straight-forward manner, and even combine different assertions into
a single one.

The Divergence structure

A Divergence is a structure that provides a description of an assertion. And
it’s present to let the computations deal with such description at a high
level, which is something you can’t do by using plain strings.

In a nutshell, a Divergence is any immutable object that implements the
following interface:

type Divergence where
 data :: { String → Any }
 toString :: Void → String
 inverse :: Void → Divergence (partial, throws)

data is a property that contains the values that participated in the
assertion. By convention, an actual property stores the value being tested
in the assertion, and an expected property stores the expected outcome of
the test. Storing these values allows reporters (a testing framework, for
example) to provide things like diffs when presenting a failed assertion to
the user.

The usage of the toString() method is pretty straight-forward: it should
give you a plain-text description of the assertion. For example, if the
original assertion was 2 > 3, a Divergence.toString() for this
assertion would return "2 to be greater than 3".

Lastly, the inverse() method returns a new Divergence object, with the
same data, but that describes the negative version of the assertion. So, for an
assertion like 2 > 3, inverting it would give you the assertion !(2 > 3).

Creating your own divergences

Alright considers anything that fulfils the aforementioned Divergence
interface to be a valid Divergence, the only other requirement is that you
should treat your object as immutable. While you could easily write your
own objects using object literals, Alright provides the functions
divergence and invertibleDivergence to construct objects fulfilling
this interface for you.

divergence is a function that takes in a template string in the format used
by spice [https://github.com/robotlolita/spice#formatstring-mappings], and gives you a Divergence object that doesn’t have an
inverse. invertibleDivergence takes two template strings and gives you a
Divergence that has an inverse:

var divergences = require('alright').divergence

var d1 = divergences.divergence('{:a} to be greater than {:b}')
var d2 = divergences.invertibleDivergence('{:a} to be greater than {:b}')

To construct a specific Divergence for an assertion, you’d use the make
method to provide the values that were part of the assertion:

var a = d1.make({ a: 1, b: 2 })
var b = d2.make({ a: 3, b: 5 })

Finally, whenever you invoke the toString() method, the template variables
will be substituted by the provided values:

a.toString()
// => '1 to be greater than 2'
b.toString()
// => '3 to be greater than 5'

The Validation structure

A Validation is data structure that can model two different cases: success
and failure. Alright uses it for defining the result of each validation
function. While any value fulfilling the interface below can be used, the
suggested implementation to use is the Data.Validation [https://github.com/folktale/data.validation] module.

type Validation[α, β] <: Applicative[β], Functor[β] where
 -- | Creates a validation containing successful value β
 of :: β → Validation[α, β]

 -- | Applies the successful function to an applicative,
 -- but aggregates failures with a Semigroup.
 ap :: (@Validation[α, β → γ], f:Applicative[_]) => [β] → f[γ]

 -- | Transforms a successful value.
 map :: (@Validation[α, β]) => (β → γ) → Validation[α, γ]

 -- | Applies one function to each side of the validation.
 fold :: (@Validation[α, β]) => (α → γ), (β → γ) → γ

 -- | Swaps the validation values.
 swap :: (@Validation[α, β]) => Void → Validation[β, α]

 -- | Transforms both sides of the validation.
 bimap :: (@Validation[α, β]) => (α → γ), (β → δ) → Validation[γ, δ]

For more information on the Validation structure, you can read the A Monad
In Practicality: First-Class Failures [http://robotlolita.github.io/2013/12/08/a-monad-in-practicality-first-class-failures.html] blog post.

Assertions and inversions

An assertion in Alright is just a function from values to
Validation[Divergence, Divergence]. That is, it determines whether a
particular set of values is valid or not, according to that property. At the
lowest level, there’s the built-in assert function, which takes a
Boolean value and a Divergence explaining the property being asserted,
then returns the Validation describing whether the assertion was successful
or not.

As such, the easiest way of writing your own custom assertions is to use the
assert function, which is, in fact, how all built-in assertions are
written. For example, if one was to write an assertion for values between a
specific range:

var assert = require('alright').assert
var divergence = require('alright').divergence.invertibleDivergence

// :: Number → Number → Number → Validation[Divergence, Divergence]
function between(min){ return function(max){ return function(a) {
 return assert(a > min && a < max
 , divergence('{:a} to be between {:min} and {:max}'
 , '{:a} to not be between {:min} and {:max}'
).make({ a: a, min: min, max: max }))
}}}

between(2)(5)(3)
// => Success(Divergence("3 to be between 2 and 5"))

Note that since these assertions will be partially applied, it’s necessary to
curry them. An easy way of writing a curried function would be to use the
Core.Lambda [https://github.com/folktale/core.lambda] module:

var curry = require('core.lambda').curry

// :: Number → Number → Number → Validation[Divergence, Divergence]
between = curry(3, between)
function between(min, max, a) {
 return assert(a > min && a < max
 , divergence('{:a} to be between {:min} and {:max}'
 , '{:a} to not be between {:min} and {:max}'
).make({ a: a, min: min, max: max }))
}

between(2, 5)(3)
// => Success(Divergence("3 to be between 2 and 5"))

If one wants to check for the inverse of this property, that is, if something
is not between a certain range, it’s not necessary to write a new
assertion. Given the role of Validation``s and ``Divergence``s in Alright,
inverting some assertion is rather straight forward, and is provided by the
built-in ``not function, although you could easily implement it yourself:

// :: Validation[Divergence, Divergence] → Validation[Divergence, Divergence]
function not(validation) {
 return validation.swap().bimap(invert, invert)

 function invert(divergence){ return divergence.inverse() }
}

not(between(2, 5)(3))
// => Failure(Divergence("3 to not be between 2 and 5"))

Verifying assertions

Up until now there have been no effects in any of the assertions we’ve
made. While this did allow us to easily compose and abstract over these
computations to provide a simple basis for making assertions, they’re not as
useful for testing. This is where verification comes in.

By separating the assertions from their verification, Alright allows different
verification strategies to be easily built on top of the existing assertions,
without having to change anything. This way Alright supports synchronous
assertions for testing frameworks that expect errors to be thrown, testing
frameworks that expect specific functions to be called, or even asynchronous
assertions using promises or any other concept.

Alright ships out of the box with support for synchronous assertions by
throwing errors when expectations aren’t met, and asynchronous assertions for
Promises/A+ [http://promises-aplus.github.io/promises-spec/], Fantasy-Land monads [https://github.com/fantasyland/fantasy-land], and monadic futures [https://github.com/folktale/data.future].

The verify function is used for synchronous assertions, and should work with
any testing library that expects exceptions to be thrown to invalidate the
test:

describe('Equality', function() {
 it('Should fail', function() {
 alright.verify(3, _.equals(2))
 // => AssertionError('Expected 3 to structurally equal 2')
 })
})

The verifyPromise function is used for asynchronous assertions, when the
testing library expects Promises/A+ values to be returned from the testing
function. Mocha [http://visionmedia.github.io/mocha/] and other libraries/frameworks support this:

describe('Equality', function() {
 it('Should fail', function() {
 return alright.verifyPromise(Promise.of(3), _.equals(2))
 // => Promise(AssertionError('Expected 3 to structurally equal 2'))
 })
})

Likewise, the verifyMonad and verifyFuture functions are used for
asynchronous assertions when the testing library expects Monads or Futures to
be returned from the testing function. These will be supported in the next
version of the Hi-Five [https://github.com/hifivejs/hifive] testing library.

 Copyright 2014, Quildreen Motta.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Alright 1.0.0 documentation

Index

 I
 | L
 | P
 | S
 | T

I

 	

 	issues

L

 	

 	licence

 	

 	license

P

 	

 	platform support

S

 	

 	support

T

 	

 	tracker

 Copyright 2014, Quildreen Motta.
 Created using Sphinx 1.2.2.

 search.html

 Navigation

 		
 index

 		Alright 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Quildreen Motta.
 Created using Sphinx 1.2.2.

_images/mocha-success.png
queen at Monn in ~/Projects/alright
2> $(npm bin)/mocha --reporter spec

Array#index0f()

2 passing

queen_at Monn in ~/Projects/alright
x [

_static/file.png

_static/up-pressed.png

_static/comment.png

dev/index.html

 Navigation

 		
 index

 		
 previous |

 		Alright 1.0.0 documentation »

 © Copyright 2014, Quildreen Motta.
 Created using Sphinx 1.2.2.

_static/down.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/up.png

_static/plus.png

_static/ajax-loader.gif

